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1 Introduction

The importance of modeling the spread of epidemics through a population has
led to the development of mathematical models for infectious disease propaga-
tion. Such models are heavily dependent on the interaction between individuals.
A number of empirical studies have provided estimates of frequency and duration
of interactions between individuals [3,4], which affect the disease propagation.
Other work has considered modeling disease propagation on random contact
networks with different properties [1,2].

The objective of our work is to compare different models for contact networks
and to find the best model to use to simulate contact networks that are close to
the actual network. We do this by comparing the disease dynamics of a stochastic
Susceptible-Infectious-Recovered (SIR) model over the simulated network with
the disease dynamics over the actual network, since our goal is to find the model
that best preserves disease propagation dynamics.

We consider a stochastic SIR model applied to a range of network contact
models that differ in their complexity levels over six datasets of interactions
between people in a variety of settings. Our results demonstrate that the choice
of network model can have a significant effect on how closely the outcomes of the
epidemic simulation on a simulated network match the outcomes on the actual
network. In particular, preserving degrees of nodes appears to be much more
important than preserving cluster structure for accurate epidemic simulations.

2 Datasets and Methods

We consider a variety of contact network datasets in this study. Table 1 shows
summary statistics for each dataset.We evaluate the quality of a contact network
model for simulations of epidemics by conducting the following steps for each
dataset:

1. Simulate 5, 000 epidemics over the actual network.
2. Fit contact network model to actual network.
3. Simulate 100 networks from contact network model. For each simulated net-

work, simulate 50 epidemics over the network for 5,000 epidemics total.
4. Compare the results of the epidemic simulations over the actual network

with those over the simulated networks.
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Number of nodes 43 123 126 201 242 1178
Sensor type Wi-Fi Bluetooth RFID RFID RFID RFID

Proximity range N/A 5 m 1–1.5 m 1–1.5 m 1–1.5 m Room
Graph density 0.326 0.228 0.217 0.0328 0.285 0.569

Clustering coefficient 0.604 0.496 0.522 0.459 0.480 0.748
Average degree 14.0 27.8 27.1 6.56 68.7 671

Maximum degree 28 73 55 21 134 1072

Table 1: Summary statistics from datasets used in this study.

These steps are repeated for each contact network model that we consider:
Erdős-Rényi Model, degree Model, stochastic block model, and degree-corrected
stochastic block model. To get a fair evaluation of the dynamics of epidemics
spreading over different contact network models, all of the parameters which are
not related to the contact network model are kept constant. In our experimental
setup, we have set the probability of infection for every interaction between
people to be equal to 0.025. The probability of recovery is also set to be 0.025.

3 Results and Discussion

Unlike most prior studies such as [3], we measure the quality of a network model
by the area between its mean SIR curve over all epidemics on the simulated net-
works compared to the mean SIR curve for epidemics on the actual network. By
measuring the area between the curves (e.g. the fraction of recovered people after
the disease dies out as in [3]), we capture the difference in transient dynamics
(e.g. the rate at which the infection spreads) rather than just the difference in
final outcomes. Our findings suggest that the degree-corrected stochastic block
model (DC-SBM) is the best choice of contact network model in epidemic sim-
ulations because it resulted in the minimum average area between SIR curves.
Interestingly, using the degree model resulted in an average area between SIR
curves only slightly larger than the DC-SBM despite having less than half as
many parameters. The SBM (without degree correction) also has half as many
parameters as the DC-SBM, but has over twice the area between SIR curves. We
note that the difference between the degree model and the SBM cannot be ob-
served using log-likelihood as the quality measure, as both models are very close
in log-likelihood. This leads us to believe that preserving degree has a greater
effect on accuracy of epidemic simulations than preserving community structure.
Furthermore, this finding demonstrates that one cannot simply evaluate the ac-
curacy of a contact network model for epidemic simulations only by examining
goodness-of-fit on the actual contact network!

In this study, we estimated the parameters for each contact network model
using the contact network itself, which we cannot do in practice because the
contact network is often unknown. As a result, one would have to estimate the
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(a)

Model Area Log-lik # param

E-R 1.82 −0.597 1
Degree 0.73 −0.496 319
SBM 1.43 −0.504 328

DC-SBM 0.71 −0.385 647

(b)

Fig. 1: Comparison of (a) area between SIR curves of each model with respect to
actual network for each dataset and (b) shows quality measures (higher is better
for log-likelihood; lower for others) averaged over all datasets for each model.

model parameters from prior knowledge or partial observation of the contact
network, which introduces additional error that was not studied in this paper. It
would be of great interest to perform this type of sensitivity analysis to identify
whether the DC-SBM and degree model are still superior even when presented
with less accurate parameter estimates. Also, there is a risk of overfitting in
more complex models which should be examined in a future extension of this
work. Another limitation of this study is our consideration of static unweighted
networks. Indeed, prior work [3] has shown that it is important to consider the
time duration of contacts between people, which can be reflected as weights in the
contact network, as well as the times themselves, which can be accommodated
by using models of dynamic rather than static networks. We plan to expand this
work in the future by incorporating models of weighted and dynamic networks
to provide a more thorough investigation.
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